به گزارش تحلیل ایران به نقل از مهر، هوش مصنوعی به عنوان یک فناوری پیشرفته، توانایی ماشینها را در انجام وظایفی که معمولاً به عنوان رفتارهای هوشمند انسانی شناخته میشوند، مانند یادگیری، استدلال و حل مسائل، به نمایش میگذارد. این
توانایی، به واسطه الگوریتمهای پیچیدهای حاصل میشود که امکان استفاده از دادهها را برای پیشبینیهای دقیقتر و یا حتی خلق محتوای جدید فراهم میسازند. در حقیقت، این الگوریتمها قادر هستند تا الگوهایی را در میان حجم وسیعی از دادهها شناسایی کنند و ارتباطات
پیچیدهای را بین این دادهها کشف نمایند که ممکن است برای ذهن انسان قابل درک نباشد.
در سالهای اخیر، سه حوزه کلیدی شامل توسعه روشها و الگوریتمهای پیشرفته برای آموزش مدلهای هوش مصنوعی، بهبود قابل توجه در سختافزارهای کامپیوتری مورد نیاز برای اجرای این مدلها و دسترسی گسترده به حجم عظیمی از دادههای مرتبط با بیماری سرطان، مانند تصاویر
پزشکی، دادههای ژنومیک و اطلاعات بالینی، به شکلگیری و توسعه کاربردهای نوآورانهای از هوش مصنوعی در تحقیقات مربوط به شناسایی و درمان سرطان منجر شده است. این پیشرفتها، نویدبخش ایجاد تحولی اساسی در چگونگی فهم، تشخیص و درمان سرطان هستند و به زعم بسیاری از متخصصان
میتوانند به بهبود قابل توجهی در نتایج درمانی و سلامت بیماران مبتلا به سرطان منجر شوند.
مهر در این گزارش به مرور برخی کاربردهای کلیدی هوش مصنوعی در تشخیص و مراقبت بیماری سرطان و چالشها و فرصتهای آن در این بخش از نظام سلامت میپردازد.
کاربردهای هوش مصنوعی در تحقیقات و مراقبتهای سرطان
تحقیقات مؤسسه ملی سرطان ایالات متحده آمریکا (NCI) در حال پیشبرد استفاده از هوش مصنوعی در تمام جنبههای تحقیقات و مراقبتهای سرطان است که شامل شناخت مکانیسمهای سرطان، غربالگری و تشخیص سرطان، کشف داروهای جدید، نظارت بر سرطان و ارائه خدمات بهداشتی میشود.
تقویت دانش بنیادی در بیولوژی سرطان
همانطور که پیشتر ذکر شد، هوش مصنوعی به عنوان یکی از ابزارهای نوین و قدرتمند در عرصه پزشکی، بهویژه در مطالعه و درک عمیقتر بیولوژی سرطان، نقش بسیار مهمی ایفا میکند. بیولوژی سرطان، شامل مطالعه مکانیسمهای مولکولی و سلولی است که منجر به آغاز، پیشرفت و متاستاز
(گسترش) سرطان میشود. فهم دقیق این مکانیسمها، کلید اصلی برای توسعه روشهای درمانی جدید و مؤثرتر است.
یکی از راهکارهای مهم در این زمینه، استفاده از هوش مصنوعی برای استخراج اطلاعات و دانش از ادبیات علمی موجود است. با توجه به حجم عظیم مقالات و تحقیقات منتشر شده در زمینه سرطان، پردازش و استخراج اطلاعات مفید از این منابع به یک چالش جدی تبدیل شده است. اینجاست
که مدلهای زبانی بزرگ وارد عمل میشوند. این مدلها که با استفاده از هوش مصنوعی توسعه یافتهاند، قادرند با تحلیل خودکار متنها و مقالات علمی، الگوها و ارتباطات پنهان بین دادهها را کشف کرده و اطلاعات جدید و مهمی را استخراج کنند که به راحتی توسط انسان قابل شناسایی
نیست. این فرآیند میتواند به تسریع درک ما از مکانیسمهای پیچیده سرطان کمک کرده و زمینهساز پیشرفتهای جدید در درمان باشد.
یکی دیگر از کاربردهای برجسته هوش مصنوعی در بیولوژی سرطان، شبیهسازی رفتارهای مولکولی پیچیده است. به عنوان مثال، در همکاری بین مؤسسه ملی سرطان ایالات متحده آمریکا (NCI) و وزارت انرژی این کشور، از هوش مصنوعی برای شبیهسازی رفتار اتمی پروتئین «RAS» استفاده
میشود. پروتئین «RAS» یکی از مهمترین پروتئینهایی است که در بسیاری از انواع سرطانها جهش مییابد و نقش حیاتی در رشد و تکثیر سلولهای سرطانی ایفا میکند. شبیهسازی دقیق رفتار این پروتئین و تعاملات آن با دیگر پروتئینها، میتواند به دانشمندان کمک کند تا راههای
جدیدی برای هدف قرار دادن جهشهای سرطانزا در ژن «RAS» کشف کنند. این رویکرد نه تنها به درک بهتر مکانیسمهای مولکولی سرطان کمک میکند، بلکه میتواند منجر به توسعه داروهای جدید و مؤثرتر برای درمان این بیماری گردد.
علاوه بر این، هوش مصنوعی به پژوهشگران این امکان را میدهد که به طور همزمان دادههای متعددی را از منابع مختلف از جمله دادههای ژنومی، دادههای پروتئومیک و دادههای مربوط به مسیرهای سلولی تجزیه و تحلیل کنند. این تحلیلهای چندجانبه میتواند تصویری جامعتر و
دقیقتر از مکانیسمهای بیولوژیکی سرطان ارائه دهد و به شناسایی اهداف جدید درمانی کمک کند.
تسریع در غربالگری، تشخیص و شناسایی سرطان
هوش مصنوعی علاوه بر تقویت دانش بنیادی از سرطان در سالهای اخیر توانسته است نقش بسیار مهمی در بهبود فرآیندهای غربالگری، تشخیص و شناسایی این بیماری نیز ایفا کند. این فناوری با ترکیب قدرت محاسباتی بالا و الگوریتمهای پیشرفته، نه تنها به سرعت بخشیدن به این فرآیندها
کمک میکند، بلکه دقت و قابلیت اطمینان تشخیصها را نیز بهطور قابل توجهی افزایش میدهد.
بهبود تشخیص سرطان از طریق تحلیل تصاویر پزشکی: یکی از مهمترین کاربردهای هوش مصنوعی در حوزه پزشکی، استفاده از الگوریتمهای یادگیری عمیق برای تحلیل تصاویر پزشکی است. برای مثال، در مورد تشخیص سرطان پروستات، سازمان غذا و داروی ایالات متحده (FDA) برخی نرمافزارهای
مبتنی بر هوش مصنوعی را تأیید کرده است که به پاتولوژیستها در شناسایی نواحی مشکوک در تصاویر بیوپسی کمک میکنند. این نرمافزارها با تحلیل دقیق تصاویر میتوانند نواحی احتمالی وجود سرطان را مشخص کنند و به این ترتیب، دقت و سرعت تشخیص افزایش یابد.
تحلیل ماموگرافی و تشخیص سرطان سینه: هوش مصنوعی همچنین توانسته است تحولاتی بزرگ در تشخیص سرطان سینه ایجاد کند. در این حوزه، الگوریتمهای تصویربرداری هوش مصنوعی قادر هستند تصاویر ماموگرافی را با سرعت و دقت بسیار بالا پردازش کنند. این الگوریتمها نه تنها میتوانند
تودههای سرطانی را شناسایی کنند، بلکه میتوانند با تحلیل الگوهای موجود در تصاویر، خطر طولانیمدت ابتلاء به سرطانهای مهاجم را نیز پیشبینی نمایند. این توانایی به رادیولوژیستها اجازه میدهد که تمرکز بیشتری روی موارد پیچیدهتر بگذارند و بدین ترتیب، کارایی و
اثربخشی فرآیند تشخیص را بهبود بخشند.
تشخیص زودهنگام سرطانهای دهانه رحم و پروستات: یکی دیگر از حوزههای مهم کاربرد هوش مصنوعی در بخش پزشکی، تشخیص زودهنگام سرطانهای دهانه رحم و پروستات است. در حال حاضر، بسیاری از محققان حوزه فناوری پزشکی، از رویکردهای یادگیری عمیق برای توسعه ابزارهای خودکار
تشخیص پیشسرطانهای دهانه رحم با استفاده از تصاویر دیجیتال استفاده میکنند. این ابزارها میتوانند بهسرعت و با دقت بالا، ضایعات پیشسرطانی را شناسایی کنند و به این ترتیب، امکان مداخله و درمان زودهنگام را فراهم آورند.
نقش هوش مصنوعی در افزایش دقت و سرعت تشخیص: هوش مصنوعی نه تنها به تسریع فرآیندهای غربالگری و تشخیص کمک میکند، بلکه توانایی کاهش خطاهای انسانی را نیز دارد. الگوریتمهای هوش مصنوعی با تحلیل دادهها و شناسایی الگوهای پنهان، میتوانند اطلاعاتی را ارائه دهند
که ممکن است توسط انسانها نادیده گرفته شود. این امر بهویژه در مواردی مانند بررسی تصاویر پزشکی دارای حجم زیادی از دادهها بسیار مفید است.
علاوه بر این، هوش مصنوعی میتواند به عنوان یک ابزار پشتیبان تصمیمگیری عمل کند و به پزشکان کمک کند تا تصمیمات دقیقتری بگیرند. به عنوان مثال، نرمافزارهای هوش مصنوعی میتوانند نتایج تستها و تصاویر را با دادههای تاریخی مقایسه کنند و به پزشکان توصیههایی
برای گامهای بعدی درمان ارائه دهند. این کاربردها بهطور مستقیم میتوانند به بهبود نتایج درمانی بیماران و افزایش احتمال درمان موفقیتآمیز کمک کنند.
هوش مصنوعی و کاهش بار کاری بر دوش پزشکان: یکی از مزایای بزرگ استفاده از هوش مصنوعی در غربالگری و تشخیص سرطان، کاهش بار کاری پزشکان و متخصصان پزشکی است. با توجه به تعداد بالای بیماران و نیاز به بررسی دقیق هر مورد، پزشکان ممکن است تحت فشار زیادی قرار بگیرند
که میتواند منجر به خستگی و افزایش احتمال خطا شود. هوش مصنوعی میتواند بخشهای قابل توجهی از این بار را کاهش دهد. به عنوان مثال، الگوریتمهای هوش مصنوعی این امکان را دارند که به سرعت تصاویر را تحلیل کرده و موارد نگرانکننده را علامتگذاری کنند، به طوری که
پزشکان تنها بر روی مواردی تمرکز کنند که به بررسی دقیقتر نیاز دارند.